Flow Polynomial of some Dendrimers
Authors
Abstract:
Suppose G is an nvertex and medge simple graph with edge set E(G). An integervalued function f: E(G) → Z is called a flow. Tutte was introduced the flow polynomial F(G, λ) as a polynomial in an indeterminate λ with integer coefficients by F(G,λ) In this paper the Flow polynomial of some dendrimers are computed.
similar resources
flow polynomial of some dendrimers
abstract. suppose g is an nvertex and medge simple graph with edge set e(g). an integervalued function f: e(g) → z is called a flow. tutte was introduced the flow polynomial f(g, λ) as a polynomial in an indeterminate λ with integer coefficients by f(g,λ) in this paper the flow polynomial of some dendrimers are computed.
full textComputation on Zagreb Polynomial of Some Families of Dendrimers
In mathematical chemistry, a particular attention is given to degree-based graph invariant. The Zagrebpolynomial is one of the degree based polynomials considered in chemical graph theory. A dendrimer isan artificially manufactured or synthesized molecule built up from branched units called monomers. Inthis note, the first, second and third Zagreb poly...
full textextensions of some polynomial inequalities to the polar derivative
توسیع تعدادی از نامساوی های چند جمله ای در مشتق قطبی
15 صفحه اولSome Topological Indices of Nanostar Dendrimers
Wiener index is a topological index based on distance between every pair of vertices in a graph G. It was introduced in 1947 by one of the pioneer of this area e.g, Harold Wiener. In the present paper, by using a new method introduced by klavžar we compute the Wiener and Szeged indices of some nanostar dendrimers.
full textNarumi-Katayama Polynomial of Some Nano Structures
The Narumi-Katayama index is the first topological index defined by the product of some graph theoretical quantities. Let G be a simple graph. Narumi-Katayama index of G is defined as the product of the degrees of the vertices of G. In this paper, we define the Narumi-Katayama polynomial of G. Next, we investigate some properties of this polynomial for graphs and then, we obtain ...
full textThe Neighbourhood Polynomial of some Nanostructures
The neighbourhood polynomial G , is generating function for the number of faces of each cardinality in the neighbourhood complex of a graph. In other word $N(G,x)=sum_{Uin N(G)} x^{|U|}$, where N(G) is neighbourhood complex of a graph, whose vertices are the vertices of the graph and faces are subsets of vertices that have a common neighbour. In this paper we compute this polynomial for some na...
full textMy Resources
Journal title
volume 5 issue Supplement 1
pages 17- 20
publication date 2014-12-01
By following a journal you will be notified via email when a new issue of this journal is published.
Keywords
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023